
Analysis of Unknown Materials with Prompt Gamma-ray Activation Analysis (PGAA)

Prompt Gamma-Ray Activation Analysis Method

Portable PGAA/NAA Analysis System

Advantages of the PGAA Method

- Nondestructive analysis preserves samples for further analysis
- Simultaneous analysis of all elements (isotopes) from Hydrogen to Uranium and beyond
- Uniform sample analysis
- In situ analysis requiring no sample preparation
- Quantitative analysis of all major components of a sample (mg to ppb sensitivity depending on the element)

Requirements for PGAA

Gamma Ray Detection System

- Compton Suppressed Ge or cluster Ge detectors
- High Resolution 0 11 MeV
- Shielding from background and gammas from scattered neutrons
- Fission detectors analysis of fissionable actinides
- Analysis Software developed at Budapest Reactor

PGAA Sensitivity

For a system with 10⁶ n/sec, the detection limit per cm³ *

- B, Cd, Sm, Eu, Gd
- m H, Cl, Sc, Mn, Co, Se, Kr, Rh, In, Xe, Cs, Nd, Dy, Er, Yb, Re, Au, Hg
- m Na, K, Ti, V, Cr, Fe, Ni, Cu, As, Mo, Ru, Pd, Ag, Te, I, La, Pr, Tb, Ho, Tm, Lu, Hf, W, Os, Ir, Pt, Th
 - m Li, N, Ne, Mg, Al, Si, P, S, Ar, Ca, Zn, Ga, Ge, Br, Rb, Sr, Zr, Nb, Sn, Sb, Ba, Ce, Tl
 - m Be, C, O, F,Y, Ta, Pb, Bi

^{*} From C. Yonezawa, Analytical Science 2, 303 (1994))

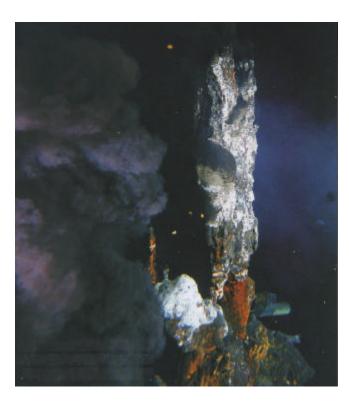
PGAA Elemental Sensitivity Н 2 He 1.00794 4,002602 Z Element 0.333 Ь 3.10E-05 b 20.5 b **Detection Limit*** 3.10 b 4 Be 8 0 F 10 Ne <10 ng 6 <1 ug 6.941 9.012182 10.811 12.0107 14.00674 15,9994 18,9984032 20.1797 atomic weight 0.0449 b 0.0076 b <10 ug 764 b 0.00351 b 0.075 b 1.90E-04 b 0.0096 b 0.0395 b 0.95 b 6.2 b 4.74 b 3.64 b 2.41 b 4.32 b 10.0 b 3.75 b σ(capture) <100 ug >100 ug 15 P 17 CI 11 Na 12 Mg 13 Al 14 Si 16 S 18 Ar σ(scattering) No data 22,989770 24,3050 30,973761 26.981538 28.0855 32,066 35,4527 39,948 0.400 Ь 0.063 b 0.231 Ь 0.171 b 0.172 b 0.52 b 33.1 b 0.68 b 3.27 b 3.13 b 0.249 b 3.03 b 1.41 b 1.91 b 0.92 b 15.9 b 19 K 21 Sc 32 Ge 33 As 20 Ca 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 34 Se 35 Br 36 Kr 44,955910 50.9415 51.9961 54,938049 55,845 58.933200 58,6934 63,546 69,723 72,61 74,92160 39,0983 40.078 47.867 78.96 83,80 0.431 b 4.89 b 2.56 b 20.4 b 3.78 b 0.90 b 1.07 b 0.79 b 4.50 b 15.3 Ь 22.5 b 2.06 b 9.8 b 6.1 b 3.07 b 13.3 b 4.46 b 1.35 b 4.06 b 2.93 b 22.4 b 3.71 b 4.81 b 3.28 b 2.20 b 11.6 b 6.0 b 17.9 b 7.9 b 4.28 b 5.4 b 9.0 b 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 54 Xe 102.90550 85.4678 87.62 88,90585 91.224 92,90638 95,94 [98] 101.07 106.42 107.8682 112.411 114.818 118,710 121,760 127.60 126,90447 131.29 0.342 Ь 1.25 b 4.53 b 0.00100 Ь 0.192 b 1.15 b 2.57 b 2.57 b 145 b 7.4 b 2.43 Ь 2520 b 156 b 0.63 b 1.78 b 6.2 b 23.8 b 2.51 b 3.37 b 0.183 b 7.7 b 5.2 b 6.4 b 5.09 b 2.17 b 2.65 b 73 Ta 79 Au 83 Bi 84 Po 85 At 86 Rn 55 Cs 56 Ba 57 La 72 H 74 W 75 Re 76 Os 78 Pt 80 Hg 81 T 82 Pb 132,90545 137.327 138,9055 178.49 180,9479 183.84 186.207 190.23 192.217 195.078 196,96655 200.59 204.3833 207.2 208,98038 [209] [210] [222] 29.0 b 0.84 b 29.7 b 17.8 b 3.70 b 0.168 b 9.0 b 0.079 b 43.6 b 10.9 b 9.6 b 99 b 384 b 3.44 b 0,0096 b 10.1 b 10.3 b 6.1 b 4.96 b 11.4 b 8.2 b 5.6 b 11.8 b 7.8 b 11.1 b 10.0 b 9.3 b 89 Ac 107 Bh 108 Hs 87 Fr 88 Ra 04 Rf 105 Db 106 Sg 112 117 118 09 Mt 111 113 114 115 116 10 [223] [226] [227] [262] [264] [261] [266] [269] [268] [271] [272] [277] 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 65 Tb 67 Ho 68 Er 69 Tm 70 Yb 71 Lu 64 Gd 66 Dy 151.964 157.25 158,92534 164.93032 168.93421 174,967 140,116 140,90765 144.24 [145] 150.36 162.50 167.26 173.04 11.5 b 49.5 b 5613 b 2983 Б 48770 Ъ 23.4 b 488 b 3.50 b 8.2 b 35.7 b 24.0 b 2.50 b 2.54 b 14.1 b 30.5 b 8.1 b 165 b 9.0 b 18.6 b 7.0 b 94 b 8.6 b 6.3 b 93 Np 97 Bk 99 Es 100Fm 102 No 103 Lr 91 Pa 92 U 94 Pu 95Am 96 Cm 98 Cf 90 Th 01Md 231.03588 232,0381 238,0289 [237] [244] [247] [247] [251] [252] [257] [258] [259] [262] [243]

3.37 b

9.4 b

7.4 b

^{*} Per cm3 based on 0.01 captures per second assuming 106 neutrons/cm2 and neglecting gamma-ray detection efficiency.


Experimental Results With PGAA

•Comparison of certified (NIST) and measured concentrations in river sediment

	CERTIFIED	MEASURED
Element	Concentration%	Concentration%
Cr	2.96±0.28	≡2.96
Fe	11.3±1.2	11.5±0.3
K	1.2	1.4±0.1
Ca	2.9	3.0±0.1
Cd	0.00102±0.00009	0.00104±0.00003
Mn	0.078±0.010	0.077±0.011

Experimental Results With PGAA

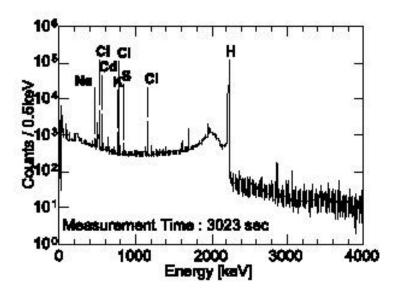
Analysis of Deep Sea Vents (% by weight)

	ALVIN 917-R4	ALVIN 1457-1R-C	ALVIN 1461-2R
o	45.9 [*]	41(6), 44.9*	45.1*
S	20.0 (0.2)	0.151 (0.005)	0.16 (0.01)
Ca	11.3 (0.2)	7.22 (0.11)	7.25 (0.13)
Fe	9.28 (0.11)	9.65 (0.08)	9.37 (0.09)
Cu	7.67 (0.07)		
Al		7.10 (0.07)	7.06 (0.12)
Mg	1.8 (0.2)	3.98 (0.11)	3.6 (0.2)
Zn	1.36 (0.05)		
P		0.85 (0.18)	1.6 (0.2)
Ni	1.17 (0.003)	0.022 (0.002)	
Ti		1.097 (0.008)	1.060 (0.010)
Si	0.55 (0.05)	22.6 (0.3)	22.3 (0.3)
Н	0.368 (0.004)	0.0290 (0.0005)	0.027 (0.001)
K	0.27 (0.06)	0.138 (0.004)	0.16 (0.01)
CI	0.194 (0.002)	0.0566 (0.0005)	0.0188 (0.0005)
Mn		0.154 (0.002)	0.161 (0.004)
Na	0.140 (0.014)	1.97 (0.04)	1.96 (0.05)
V		0.042 (0.002)	0.046 (0.003)
Co	0.0066 (0.0011)	0.0045 (0.0003)	0.0058 (0.0009)
Sc	1677	0.0039 (0.0002)	0.0058 (0.0005)
Cd	0.00352 (0.00005)		0.00024 (0.00003)
В	0.00220 (0.00002)	0.000659 (0.000007)	0.000658 (0.000008)
Dy	1	0.00099 (0.00008)	0.00111 (0.00014)
Gd	0.000050 (0.000006)	0.000524 (0.000007)	0.000556 (0.000010)
Sm	0.00033 (0.00003)	0.000330 (0.000005)	0.000340 (0.000007)

Experimental Results With PGAA

Analysis of Reagent Materials

```
CaF<sub>2</sub> (Reagent grade, Baker and Adamson)
                                               Ca(OH)<sub>2</sub>
     Ca 54.3±0.9%
                                                    Ca 93.6±1.9%
          44.4±1.9%
                                                     H 5.04±0.005%
     Al 0.66±0.07%
                                                     K 1.3±0.2%
     Cl 0.150±0.003%
                                                     CI 0.028±0.002
     Na 0.040±0.009%
                                                     Eu 54±9 ppm
ZnO (Mallinckrodt)
                                                     Gd 26±1 ppm
     Zn 100%)
                                                         4.2±0.3 ppm
                                               CeO<sub>2</sub>
          5.1±0.3 ppm
HfO<sub>2</sub> (98%, Aldrich Chemical Co.)
                                                     Ce 99.8%
     HfO<sub>2</sub> (no detectable impurities)
                                                      K 0.077±0.016%
TiO<sub>2</sub>
                                                         0.074±0.010%
      Τi
         96.8%
                                                     Na 0.061±0.009%
         3.1±0.2%
                                                         0.004±0.001%
         0.04±0.01%
                                                         31±1 ppm
     Eu 0.022±0.002%
                                                     Eu 11±1 ppm
     Gd 5.2±0.2 ppm
                                                     Sm 1.8±0.1 ppm
          2.0±0.2 ppm
                                                     Gd 1.2±0.1 ppm
Gd<sub>2</sub>O<sub>3</sub> – no detectable impurities
```



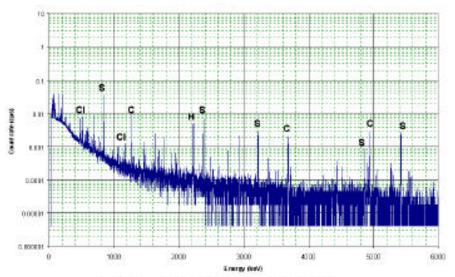
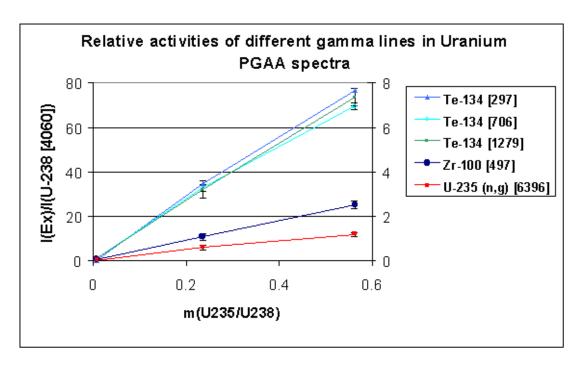

Figure 1. PGAA spectrum of 8 grams from Cd-rats 3 hrs after injection.

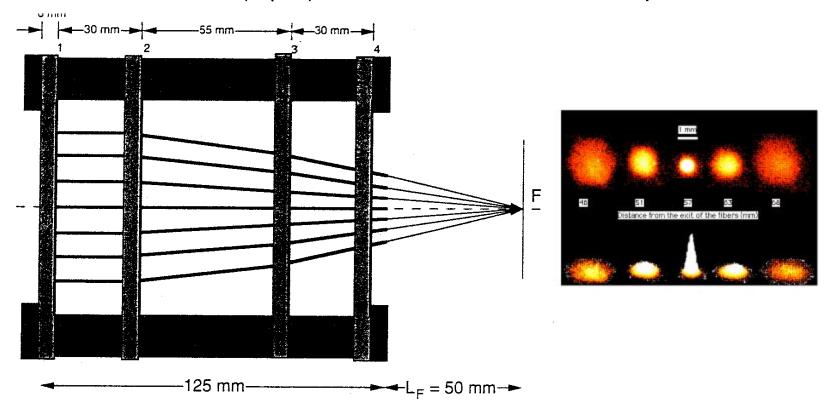
Table 1. Lower detection limits for PGAA

Element	Cold Neutron	Thermal Neutron
B/H	1 ppm	7 ppm
Cd/H	3 ppm	8 ppm
Hg/H	-	50 ppm
Cl/H	0.02%	0.09%
K/H	0.2%	0.5%
Na/H	0.1%	0.3%
S/H	0.4%	0.7%


2 g of kidney irradiated with cold neutrons $(1.1\times10^8 \text{ n/cm}^2\text{s})$ for 50 min and with thermal neutrons $(2.4\times10^7 \text{ n/cm}^2\text{s})$ for 100 min. Detection limit defined as 3σ of background. (Y. Oura, S. Enomoto, and H. Nakahara, RIKEN Review **35**, 73 (2001).)

PGAA Spectrum of fullerene

Impurity content of C60 fullerene


Element	Conc.(%)	Unc.(%)	Composition
Н	0.012	10	0.08
C	97.1	4.5	60
S	2.88	1.3	0.67
Cl	0.003	20	0.0006

Analysis of ²³⁵U/²³⁸U ratios using PGAA. Natural uranium and samples enriched to 19.1% and 36% in ²³⁵U were analyzed.

Focused Beams with Cold Neutrons

Polycapillary neutron lens (NIST). 1763 glass fibres (0.5 mm), each with 1657 channels (9 μ m) focus neutrons to 0.5 mm spot.

